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Abstract
We generalize the concept of factorization using truncated Gauss sums to
exponential sums where the phase increases with the j th power of the
summation index. For such sums the number of terms needed to suppress
ghost factors of N scales as 2j

√
N . Unfortunately, this advantageous scaling law

is accompanied by a disadvantage: the gap between factors and non-factors
decreases rapidly with increasing power j and as a consequence it gets more
difficult to identify factors. This feature serves as our motivation to study sums
with an exponential phase. Our numerical simulations indicate that in this
case the scaling law is logarithmic and that we retain a significant gap between
factors and non-factors.

PACS numbers: 02.10.De, 42.25.Hz

1. Introduction

Recently, several schemes for integer factorization [1–3] based on Gauss sums [4, 5] were
proposed [6–13]. The resulting experiments rely on NMR [14–16], cold atoms [17] and
ultra-short pulses [18, 19], and have successfully demonstrated the possibility of finding the
prime factors of up to 17-digit numbers without applying paradigms of quantum computation
used in the well-known Shor algorithm [20]. Indeed, Shor’s algorithm solves a period finding
problem using the translation invariance of the quantum Fourier transform and entanglement.

In contrast, factorization using Gauss sums consists of a feasible factor test based on a
classical interference scheme. Indeed, constructive interference leads to a large signal for
a factor of N. For non-factors destructive interference yields a small signal. This feature
allows us to distinguish factors from non-factors. In the most elementary approach we have
to perform this factor test for every number smaller than

√
N . As a consequence our method

scales as
√

N and is therefore exponential as shown in [14].
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It is also instructive to consider the resources necessary to implement a Gauss sum. In
all experiments performed so far the individual contributions to the Gauss sum are created by
individual laser pulses. In [21], we have shown that the total number R of pulses needed to
factor the number N is determined by the product

R ∼ M · N
1
2 (1)

consisting of the number of terms M in the Gauss sum times the number of trials given by
N

1
2 . Hence, the scaling law between M and N determines the ultimate resources necessary to

factor N.
In [21], we have shown that in order to achieve a significant contrast between factors and

non-factors M has to be of the order of the fourth root of N. This condition leads us to the
scaling law

R2 ∼ N
1
4 · N

1
2 = N

3
4 (2)

of pulses.
In the present study we extend our ideas of factorization with the help of Gauss sums by

considering exponential sums. Here the phase is proportional to mj where m is the summation
index and j is an integer. We show that in such a case the truncation depends on the inverse
of this function, i.e. M ∼ 2j

√
N leading to

Rj ∼ N
1

2j · N
1
2 = N

j+1
2j . (3)

Hence, we can save experimental resources by employing rapidly increasing phase functions.
The extreme limit of an exponential sum where the phase varies exponentially with the
summation index, i.e. mm, should then be the optimal choice. We briefly address this case and
demonstrate by a numerical analysis that the truncation parameter depends only logarithmically
on the number to be factored providing us with the estimate

Rexp ∼ log N · N
1
2 (4)

of resources.
It is interesting to note that recently an experiment [16] based on NMR has used an

exponential sum with j = 5 to factor a 17-digit number consisting of two prime factors of the
same order. In this experiment π -pulses [22] drive a two-level atom. By choosing the phases
of the pulses appropriately we can achieve [23] a situation in which the resulting polarization
is determined by a truncated exponential sum with a particular choice of j . Moreover, even
the extreme case of an exponential phase mm can be realized in this way. First preliminary
results from the Suter group exist [24].

Exponential sums play a central role in analytic number theory [25]. Here, they are
defined over a set of coprime integers. In contrast, the exponential sums studied in the present
paper are different from the classic exponential sums for two reasons: (i) in our sums the
summation range extends over all integers including those having a common factor, and (ii)
our sums are limited by a truncation parameter, and are normalized. The first condition allows
us to distinguish uniquely between factors and non-factors. Our goal in the present paper
is to investigate how this discrimination property survives the second modification, which is
motivated by limited experimental resources.

Our paper is organized as follows: in section 2 we introduce exponential sums and
show that they allow us to discriminate between factors and non-factors. In particular, we
demonstrate by a numerical example that phases which increase as m3 suppress ghost factors
more effectively than Gauss sums which have phases proportional to m2. This feature is our
motivation to study the factorization properties of exponential sums.
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In [21], we have shown that for truncated Gauss sums the influence of the truncation
parameter M depends crucially on the choice of trial factors. We have identified four classes:
(i) factors, which are not influenced by M, (ii) threshold trial factors, which are also independent
of M, (iii) typical non-factors, which decay very quickly, and (iv) ghost factors, which decay
slowly. In section 3 we perform a similar analysis for exponential sums.

In section 4 we confirm by an analytic argument the numerical calculations of section 2.
We show that the number of terms which have to be summed in order to suppress the signal
of all ghost factors depends on the 2j th root of the number to be factored.

For all exponential sums except the Fourier sum there exist non-factors for which the
signal cannot be suppressed below certain thresholds by further increasing the truncation
parameter. The values of these thresholds are determined by the power j and can be close
to the maximal signal of unity corresponding to a factor. In such a case we cannot achieve a
sufficient contrast between the signals of factors and non-factors. We discuss the restrictions
imposed by this fact on our factorization scheme in section 5.

Our analysis indicates that rapidly increasing phases suppress ghost factors most
effectively. This feature suggests considering the extreme case with the phase mm. We
briefly address this case in section 6.

We summarize our results in the conclusions of section 7 and present an outlook.

2. Factorization with exponential sums

The landmark paper [26] by Heath–Brown and Patterson investigates the distribution of values
of exponential sums defined by

g(c) =
∑

d(mod c)
gcd(c,d)=1

(d/c)3 · e2π i d
c . (5)

Here c and d are natural numbers, and (d/c)3 is the cubic residue symbol [4].
However, for our purpose to factorize numbers we use truncated and normalized

exponential sums of the type

A(M,j)

N (�) ≡ 1

M + 1

M∑
m=0

exp

[
2π imj N

�

]
, (6)

where the phases are determined by the integer power j . Here N is the number to be factored
and � is a trial factor which scans through all integers between 1 and �√N�. In the experiments
performed so far the upper bound M in the sum is equal to the number of pulses applied.

We emphasize that in contrast to the sum in (5), the summation is no longer restricted
to a set of coprime integers. In this way we obtain the unique discrimination property:∣∣A(M,j)

N (�)
∣∣ = 1 if l is a factor of N, and

∣∣A(M,j)

N (�)
∣∣ < 1 otherwise.

In the case of j = 1 the exponential sum reduces to a Fourier sum. For j = 2 we find the
truncated Gauss sum

A(M)
N (�) ≡ A(M,2)

N (�) = 1

M + 1

M∑
m=0

exp

[
2π im2 N

�

]
. (7)

In the case of j = 3 the sum

A(M,3)
N (�) = 1

M + 1

M∑
m=0

exp

[
2π im3 N

�

]
(8)
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Figure 1. Factorization interference patterns of the number N = 6172015 = 5 · 379 · 3257
resulting from the Gauss sum (left) and the Kummer sum (right). Here we have chosen the
truncation parameter M ≈ ln N ≈ 15. The factors of N, depicted by black diamonds, correspond
to the signal value of unity. For most of the non-factors, depicted by gray dots, the signal value is
well suppressed. However, in the case of Gauss sum we note that for a few non-factors, depicted by
stars, the signal is close to that of a factor. Since such arguments can be misinterpreted as factors of
N we call them ghost factors. The presence of ghost factors in the factorization interference pattern
indicates that the choice of the truncation parameter M ≈ ln N is not sufficient for the Gauss sum.
However, the cubic phases in the Kummer sum grow faster than the quadratic phases in the Gauss
sum. As a result, the truncation parameter M = 15 is now sufficient to suppress all ghost factors.
Moreover, some trial factors result in a threshold value of the signal depicted by black triangles
which cannot be suppressed by further increasing the truncation parameter M. In the case of the
Gauss sum the threshold is 1/

√
2 whereas for the Kummer sum it has the value 0.844.

is the truncated version of a sum of the form (5) which carries the name Kummer sum after the
mathematician Ernst Kummer (1810–1893).

The capability of the exponential sums, (6), to factor numbers stems from the fact that
for an integer factor q of N with N = q · r all phases in A(M,j)

N are integer multiples of 2π .
Consequently, the terms add up constructively and yield A(M,j)

N (q) = 1. When � is not a factor
the phases oscillate with m and the signal

∣∣A(M,j)

N (�)
∣∣ takes on small values. In order to factor

a number N we analyze
∣∣A(M,j)

N (�)
∣∣ for arguments � out of the interval [1,

√
N ]. We refer to

the graphical representation of the signal data as factorization interference pattern.
In figure 1 we show the factorization interference patterns of the number N = 6172 015 =

5 · 379 · 3257 resulting from the Gauss sum (left) and from the Kummer sum (right) for the
choice of the truncation parameter M = 15 ≈ ln N . In both cases the factors of N lead to the
maximal signal of unity depicted by black diamonds. In contrast for most of the non-factors
the signal represented by gray dots is well suppressed. However, for the Gauss sum there
appear some non-factors, the so-called ghost factors, where the signal indicated by black stars
is still close to that of a factor. We recognize that the corresponding factorization pattern
resulting from the Kummer sum does not display any ghost factors. The origin of this positive
feature lies in the fact that the cubic phase of the Kummer sum shows a stronger increase than
the quadratic variation of the Gauss sum.

3. Classification of trial factors

In the preceding section we have shown using numerical examples that the influence of the
truncation parameter of the exponential sums depends crucially on the choice of the trial
factors. In the present section we analyze this feature in more detail and identify four classes
of trial factors.
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Figure 2. Four classes of trial factors � illustrated by the dependence of the Kummer sum
|A(M,3)

N (�)| on the truncation parameter M. In order to compare with figure 1 where M = 15
as indicated by a vertical dashed line we have chosen again N = 6172015 = 5 · 379 · 3257.
For factors of N, such as � = 5 depicted by black diamonds, the signal is constant and equal to
unity. For typical non-factors, such as � = 10 depicted by gray dots, the signal is suppressed
considerably already for small values of the truncation parameter M. However, for ghost factors,
such as � = 2337 depicted by black stars, more terms in the sum (8) are needed to suppress the
signal. Finally, for certain arguments, such as � = 45 depicted by black triangles, the signal levels
at non-vanishing threshold and it is impossible to suppress it further by increasing the truncation
parameter M.

For this purpose we start from the decomposition of the fraction N/� into an integer k
and the fractional part

ρ(N, �) = N

�
− k (9)

with |ρ| � 1/2. Indeed, the integer part contributes only as the multiplication by unity in (6)
and we find

A(M,j)

N (�) = S(M)
j (ρ(N, �)) (10)

where we have introduced the sum

S(M)
j (ρ) ≡ 1

M + 1

M∑
m=0

exp(2π imjρ). (11)

This elementary analysis allows us to identify four classes of the fractional part. Indeed, we
find in complete analogy to the Gauss sums [21] : (i) for ρ(N, �) = 0 the trial factor � is
a factor of N, (ii) for |ρ(N, �)| = tj the trial factor � results in a threshold value Tj of the
exponential sum, where the values of tj and Tj are determined by the power j , (iii) for ρ(N, �)

appropriately away from the origin the trial factor � is a typical non-factor of N and (iv) for
ρ(N, �) ∼ 0 the trial factor � is a ghost factor of N.

We illustrate the different dependences of representatives of these classes on the truncation
parameter M in figure 2 using the example of the truncated Kummer sum (8). We find signals
which are independent of M and equal to unity. They indicate factors. Moreover, we note a
rapid suppression of the signal for a typical non-factor. However, for a ghost factor the signal
is close to that of a factor and we have to include more terms in the sum (8) in order to suppress
it. Moreover, we find that for certain trial factors � the signal levels off at a non-zero threshold
value and thus cannot be reduced at all.
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4. Scaling law of the truncation parameter

In section 2 we have shown that the ghost factors spoil the discrimination of factors from
non-factors. Fortunately, we can suppress the signal of a ghost factor by increasing the
truncation parameter M. In this context the truncated Gauss sums were analyzed in [21] and
it was shown that one needs M ∼ 4

√
N terms in the sum in order to suppress the signal of

all ghost factors considerably. We now derive the corresponding scaling law Mj ∼ 2j
√

N of
an exponential sum A(M,j)

N . In [21], the upper bound for the truncated Gauss sum (7) was
obtained by approximating the Gauss sum by the Fresnel integral. We now perform a similar
analysis for the exponential sums.

Since ghost factors result from small values of the fractional part ρ ≡ N/�−k we replace
the exponential sum by an integral, i.e.

A(M,j)

N (�) = S(M)
j (ρ) ≈ 1

M

∫ M

0
e2π imj ρ dm. (12)

This approximation is justified by the van der Corput method [25] approximating sums by
sums of shifted integrals.

With the help of the substitution mjρ ≡ uj and dm = du/ j
√

ρ we find

A(M,j)

N (�) ≈ Fj (M · j
√

ρ) (13)

where

Fj (x) ≡ 1

x

∫ x

0
e2π iuj

du . (14)

This analysis brings out most clearly that for small fractional parts ρ the truncation parameters
M and ρ appear in the exponential sum only as the product M · j

√
ρ.

In order to suppress the absolute value
∣∣A(M,j)

N (�)
∣∣ below a given value ξ we have to

choose the upper bound M according to

M · j
√

ρ = α (15)

where α is the solution of the integral equation

|Fj (α)| = ξ (16)

which leads us to the relation

M = α(ξ)ρ
− 1

j . (17)

This result shows that the smaller the fractional part ρ(N, �) of the ghost factor � the more
terms are required. Since the largest trial factor is of the order of

√
N the smallest attainable

fractional part

ρmin(N) ∼ 1√
N

(18)

gives an upper bound

Mj ≈ α(ξ)ρ
− 1

j

min ≈ α(ξ)
2j
√

N (19)

on the truncation parameter M.
Hence, in order to suppress all ghost factors of N we require an order of 2j

√
N terms in the

exponential sum A(M,j)

N . We point out that the scaling law (19) is inherent in the exponential
sum since the change of ξ only modifies the pre-factor α(ξ).

In figure 3 we illustrate the behavior of
∣∣A(M,j)

N (�)
∣∣ for N = 106 + 1 and � = 103 resulting

in the fractional part ρ(N, �) = 10−3 ≈ 1/
√

N as a function of the truncation parameter M.
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Figure 3. Decay of the signal |A(M,j)

N (�)| for increasing truncation parameter M exemplified by
the Fourier (j = 1), Gauss (j = 2) and Kummer (j = 3) sums. Here we have chosen N = 106 +1
and � = 103 resulting in the fractional part ρ(N, �) = 10−3 ≈ 1/

√
N . For the Fourier sum

(black dots) we find an extremely slow decay of the signal. On the other hand, for the Gauss sum
(diamonds) already M2 ∼ 4

√
N ≈ 32 terms are sufficient to suppress the signal considerably. This

requirement is further reduced for the Kummer sum (stars) to M3 ∼ 6
√

N ≈ 10. We find that our
numerical results are in good agreement with the analytical estimate (19).

We visualize the effect of the power j on the suppression of
∣∣A(M,j)

N (�)
∣∣ by presenting three

different curves: (i) black dots correspond to the Fourier sum with linear phases, (ii) diamonds
represent the Gauss sum, and finally (iii) stars result from the Kummer sum with cubic phases.
We find that for the Fourier sum the suppression of the signal is extremely slow. Indeed,
according to the estimate (19) we need M1 ∼ √

N ≈ 103 terms in order to suppress the signal
considerably. On the other hand, for the Gauss sum already M2 ∼ 4

√
N ≈ 32 terms suffice

to reduce the signal, in agreement with (19). Finally, for the Kummer sum the decay of the
signal is even faster. We find that M3 ∼ 6

√
N ≈ 10 terms are sufficient to suppress the signal,

in agreement with (19).
In order to verify the scaling law (19) for a broad range of N we have calculated numerically

the truncation parameter Mj needed to suppress all ghost factors of N below the value ξ . We
have chosen N randomly from the interval [104, 1020] and considered ξ = 0.7. In figure 4 we
present the results for the Fourier sum (black dots), Gauss sum (open diamonds) and Kummer
sum (stars). To unravel the scaling law we use a logarithmic scale for both N- and M-axes. The
numerical results are in excellent agreement with the estimates (19) indicated by the dashed
lines.

5. Threshold

An experiment must also take into account the limited measurement accuracy. Thus for the
success of our factorization scheme we need a good contrast between the signals of factor
and non-factors, i.e. we require that the signals of all non-factors be suppressed below the
estimated measurement error. However, due to the existence of the thresholds discussed in
section 3 this suppression might be impossible for certain powers j . In such a case we might
misinterpret the signal arising from a non-factor as that of a factor. Hence, such exponential
sums A(M,j)

N are not suitable for integer factorization.
Relation (19) shows that the faster the phase grows the less terms in the exponential

sum are needed in order to suppress the signal of a ghost factor argument �. However, the

7
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Figure 4. Number Mj of terms needed to suppress the signal of all ghost factors of N below the
value 0.7 for the Fourier sum (black dots), Gauss sum (open diamonds) and Kummer sum (stars).
To unravel the scaling of Mj with N we use a log–log scale. The dashed lines follow from the
estimate Mj ∼ 2j

√
N given by (19).

suppression of the signal might be impossible for all arguments �, as we have seen already in
figure 2. This feature is closely related to the power j determining the phase.

The absolute value
∣∣A(M,j)

N (�)
∣∣ depends on how many different roots of unity we find in

the sum. These roots of unity are given by

exp

(
2π imj N

�

)
= exp (2π imjρ(N, �)) = exp

(
2π imj p

q

)
(20)

where p/q is the coprime rational representation of ρ(N, �). This is equivalent to

mj N

�
q ≡ 0, 1, . . . , q − 1 mod q, (21)

i.e. the terms in the exponential sum
∣∣A(M,j)

N (�)
∣∣ attain at most q different values.

For the Fourier sum we find all q different roots exp (2π im/q) with m = 0, . . . , q − 1 of
unity. Moreover, since they are distributed symmetrically on the unit circle they cancel each
other out. Hence, for the Fourier sum we can suppress the signal

∣∣A(M,1)
N

∣∣ of any non-factor �

below any given value by extending the summation range M.
However, for exponential sums A(M,j)

N with powers 2 � j we are not guaranteed to
find all different roots of unity. Moreover, since j �= 1 the corresponding roots of unity
exp (2π imjp/q) are not necessarily distributed symmetrically on a unit circle. Hence, they do
not cancel themselves completely. In such a case the signal

∣∣A(M,j)

N (�)
∣∣ has a non-zero limit

as M tends to infinity. This limit value determines the threshold and depends on how many
different roots of unity we find in the sum and their distribution on the unit circle. If we find
only few different roots of unity which are moreover close to each other on the unit circle the
signal

∣∣A(M,j)

N (�)
∣∣ attains values close to unity and cannot be suppressed further by increasing

the truncation parameter M, even though � does not correspond to a factor of N.
The fewest possible terms in the sum A(M,j)

N for a non-factor � occur if j + 1 is the prime
number q from the rational representation of ρ(N, �). In such a case we find from the Euler’s
theorem (see e.g. chapter 3 in [27])

mj ≡
{

1 if q is not a divisor of m

0 if q is a divisor of m
(22)

8
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Figure 5. The roots of unity contained in the exponential sums A(M,j)

N (�) exemplified by the
Fourier sum (j = 1, black dots), the Gauss sum (j = 2, open diamonds) and a higher order
exponential sum (j = 6, black stars). Here we have chosen N = 99 and � = 7 which lead to
ρ(N, �) = p/q = 1/7. For the Fourier sum we find all seven different roots of unity. However, in
the Gauss sum only four different roots of unity appear. This number is further reduced to just two
different roots of unity in the higher order exponential sum with power j = 6.

so mj · p is either congruent to p or 0 mod q. With the help of the periodicity mj · p ≡
(m + q)j · p mod q and the relation (20) we obtain for M + 1 being a multiple of q

A(M,j)

N (�) = 1

M + 1

M∑
m=0

e2π imj N
� = 1

q

q−1∑
m=0

e2π imj p

q (23)

= 1

q
(1 + (q − 1) e2π i p

q ). (24)

Hence we find for the absolute value squared

∣∣A(M,j)

N (�)
∣∣2 = 1

q2

((
1 + (q − 1) cos

(
2πp

q

))2

+ (q − 1)2 sin2

(
2πp

q

))
. (25)

Substituting q = j + 1 we find for p = 1 the threshold value of the sum A(M,j)

N

T1(j) = 1

j + 1

√
j 2 + 1 + 2j cos

(
2π

j + 1

)
. (26)

For p > 1 or for more than two different terms in the sum A(M,j)

N the threshold will always be
smaller.

To illustrate this we plot in figure 6 the behavior of the signal
∣∣A(M,6)

N (�)
∣∣ as a function

of the truncation parameter M. Here we have chosen N = 99 and � = 7 resulting in
ρ(N, �) = p/q = 1/7. Hence, q = 7 = 1 · 6 + 1 and we find that the signal converges
to the threshold value T1(6) ≈ 0.953.

More generally, for prime denominator q = k · j + 1 the sum A(M,j)

N contains at most k + 1
different terms. For the case of k = 2 an analogous calculation results in the threshold value

T2(j) = 1

2j + 1

(
1 + 2j cos

(
2π

2j + 1

))
. (27)

Obviously, for large powers j the values of T1,2(j) are very close to 1.

9
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Figure 6. Emergence of the threshold for the exponential sum A(M,j)

N with the power j = 6
for increasing truncation parameter M. We have chosen N = 99 and � = 7 resulting in
ρ(N, �) = p/q = 1/7. The signal converges to the value of T1(6) ≈ 0.953 and cannot be
suppressed by a further increase of M.

The above-derived results indicate that the exponential sums A(M,j)

N with powers j

larger than 2 can be used for integer factorization only when the experimental data are
sufficiently precise. For the Fourier sum the signal for any non-factor can be suppressed
below any given value. However, according to (19) we have to include number of terms
of the order of the square-root of N to achieve this suppression. The quadratic Gauss sum
of (7) provides a reasonable compromise between the number of terms needed and the non-
factor discrimination. The gap between the signal of a factor and the greatest threshold is
approximately 30% which should be sufficient for the experimental realization. The number
of terms in the sum needed is according to [21] reduced to the fourth root of N.

6. Factorization with an exponential phase

One way to improve the scaling law might be offered by an exponential sum where the phase
is not governed by a polynomial as in (6) but by an exponential function. This idea leads to
the sum

E (M)
N (�) ≡ 1

M + 1

M∑
m=0

exp

[
2π imm N

�

]
. (28)

We now present a numerical analysis which confirms a logarithmic scaling law. However, in
contrast to sums involving a fixed exponent, we no longer have the tools of number theory at
hand to prove perfect discrimination of factors from non-factors. Moreover, since the derivative
of mm grows faster than mm itself, standard techniques to approximate these exponential sums
by integrals cannot be applied. Nevertheless, we demonstrate that it is still possible to show
that the sum actually discriminates factors from non-factors by methods of elementary number
theory (see [27] for example).

6.1. Logarithmic scaling law

In section 4 we have found that the number of Mj terms needed to suppress all ghost factors
for the exponential sum A(M,j)

N scales like Mj ∼ 2j
√

N , i.e. Mj is determined by the inverse
function of the phase evaluated at

√
N . This feature arises from the fact that the rising

exponent prevents the function from accumulating values near unity for small arguments m,
as we illustrate in figure 7. This result suggests that for the exponential sum E (M)

N already a

10
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Figure 7. Distribution of the roots e2π im2p/q (dots) and e2π immp/q (stars) of unity for quadratic
and exponential phases, respectively. Here we have chosen p = 1 and q = 104. Since the fraction
p/q is small we observe an accumulation of the roots for small values of m in the case of the
quadratic phase.

Figure 8. Number Mexp of terms needed to suppress the signal |E (M)
N | of all non-factors of N

below the value 0.7. To unravel the scaling of M we use a logarithmic scale for N. The gray line
represents the estimate M ∼ ln

√
N . The plot indicates that already an order of ln

√
N terms in

the exponential sum E (M)
N is sufficient to find all factors of N.

logarithmic number of terms Mexp ∼ ln
√

N should be sufficient to eliminate all ghost factors.
Moreover, our numerical analysis summarized in figure 8 indicates that the largest threshold
for E (M)

N occurs around the value 0.5. Hence, we can achieve perfect discrimination of factors
from non-factors.

6.2. Discrimination property for variable exponents

The discrimination property of the exponential sums rests on the fact that only for integer
values of l which are factors of N, the sum can take the value unity. There is a number
theoretical argument supporting this fact, as long as the exponent j in the sum (6) is fixed.
This feature comes from the distribution of the values exp

(
2π imj N

�

)
on the unit circle. For

fixed j , it is impossible to hit the same point twice as m increases provided we use a truncation

11
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parameter M below 2j
√

N . However, for a variable power mm that is an exponential phase,
this non-recurrence property is not obvious. In this case we need to prove the discrimination
property explicitly.

The value exp
(
2π imm N

�

)
depends on the fractional part of mm N

�
only. We hit the same

point twice for different values m and n if and only if

mm N

�
− nn N

�
= k (29)

where k is an integer.
As in (20) we make use of the coprime rational representation of ρ(N, �) = p/q and find

that the phase factor

exp

(
2π imm N

�

)
= exp(2π immρ(N, �)) = exp

(
2π i

pmm

q

)
(30)

is a qth root of unity. In particular, it is the (pmm)th one if we enumerate them counter-
clockwise starting from the zeroth root 1 = exp

(
2π i 0

q

)
. Note that cth and dth roots coincide

if and only if q is a divisor of c − d.
So the discrimination property depends on the fact that there are values c and d such that

q is not a divisor of pcc − pdd . (31)

The discrimination threshold does not only depend on the number of such pairs, but also on
the position of the corresponding roots of unity. Opposite roots of unity eliminate themselves
in the sum, so the worst case occurs if these roots accumulate on the same position.

We consider two cases: for large q, the first numbers in the sequence pmm will be below
q, so any pair chosen from the beginning of the sequence cannot fulfil the recurrence condition
(29), so they correspond to pairwise distinct roots. As a consequence, the absolute value of
the sum cannot assume the value unity.

For small q, we show that the pth root exp
(
2π ip

q

)
and its conjugate exp

(−2π ip

q

)
appear

in the sum, which leads to the elimination of their imaginary parts. According to Euler’s
theorem [27] there is an even m such that pmm corresponds to the first root exp

(
2π i 1

q

)
and

j = m/2 gives pjj , which corresponds to the (−1)-root exp
(−2π i 1

q

) = exp
(
2π i q−1

q

)
. The

sum of this conjugate pair is a real number strictly below unity.

7. Conclusions and outlook

In the present study we have extended the idea of factorization with Gauss sums to exponential
sums where the phase is governed by a power j of the summation index. These sums are
also capable of non-factor discrimination in complete analogy to Gauss sums. However, the
truncation parameter Mj needed to achieve a significant suppression of ghost factors of the
number N scales like Mj ∼ 2j

√
N . Hence, we can save experimental resources by employing

exponential sums with large powers j . On the other hand the gap between the signal of a
factor and the greatest threshold value shrinks as j grows. Therefore, exponential sums with
large values of j can be used for integer factorization only if the expected imperfections in the
experiment are smaller than this gap.

Our technique to factor numbers takes advantage of the quasi-randomness of the phase
factors of exponential sums. This feature makes exponential sums ideal for the use of pseudo-
random number generators [28–30]. We look forward to exploring this realm of number
theory.
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We have also presented numerical simulations of factoring numbers using an exponential
sum with exponentially increasing phases. Here the resources scale only logarithmically.
Moreover, our results indicate that the gap survives.

Our results also show a connection to two recent experiments [16, 19] which factored a
13-digit and a 17-digit numbers using a Monte Carlo sampling technique of a complete Gauss
sum. This method accepts a small fraction of ghost factors and achieves a logarithmic scaling
very much in the spirit of the exponential phase.

It is interesting to compare and contrast these two approaches. Ghost factors arise from the
addition of neighboring phase factors which only deviate slightly from each other. However,
when many terms are added the phase factors are distributed homogeneously on the unit circle.
The Monte Carlo technique does not add up consecutive terms but tries to collect those terms
which almost cancel each other out. On the other hand, the exponential phase guarantees that
neighboring phase factors deviate significantly from each other and no ghost factors can arise.
This feature leads to the logarithmic scaling.

Needless to say, these schemes only rely on interference and thus our method for factoring
numbers using exponential sums still scales exponentially. To improve this scaling law by
involving entanglement is our next goal.
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[23] Štefaňák M, Merkel W, Mehring M and Schleich W P 2008 Contemporary Physics: Proc. Int. Symp. (Islamabad)

ed J Aslam, F Hussain and Riazuddin (Singapore: World Scientific)
[24] Suter D 2008 Private communication
[25] Iwaniec H and Kowalski E 2004 Analytic Number Theory (Providence, RI: American Mathematical Society)
[26] Heath-Brown D R and Patterson S J 1979 J. Reine Angew. Math. 310 111
[27] Ireland K and Rosen M 1990 A Classical Introduction to Modern Number Theory (Heidelberg: Springer)
[28] Niederreiter H and Winterhof A 2008 Finite Fields Th App 14 59
[29] Gutierrez J and Winterhof A 2007 Finite Fields Th App 14 410
[30] Niederreiter H 1987 Random Number Generation and Quasi-Monte Carlo Methods (Philadelphia, PA: Society

for Industrial Mathematics)

14

http://dx.doi.org/10.1103/PhysRevA.75.062303
http://www.arxiv.org/abs/0803.3396
http://dx.doi.org/10.1103/PhysRevLett.100.030201
http://dx.doi.org/10.1103/PhysRevLett.100.030202
http://dx.doi.org/10.1088/1367-2630/9/10/370
http://dx.doi.org/10.1016/j.ffa.2006.09.010
http://dx.doi.org/10.1016/j.ffa.2007.03.004

	1. Introduction
	2. Factorization with exponential sums
	3. Classification of trial factors
	4. Scaling law of the truncation parameter
	5. Threshold
	6. Factorization with an exponential phase
	6.1. Logarithmic scaling law
	6.2. Discrimination property for variable exponents

	7. Conclusions and outlook
	Acknowledgments
	References

